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ABSTRACT g/
3
o 3

A method is presented for solving a class of radiation and diffraction
problems which have conventionally been formulated in terms of the Wiener-
Hopf approach, The problem is formulated by representating the fields in
terms of a modal expansion, The modal expansion for the field in the open
regions is characterized by continuous eigenvalues and for the closed regions
the fields are representated in terms of the discrete eigenvectors, Matching
of the fields to the boundaries and across the aperture results in an equation
which is solved by a technique developed in this article, The technique is
an extension of the function~theoretic method necessitated by the field repre-
sentation in the open regions inherent in the problems, The solutions of an
open-ended parallel plate wavequide is used to demonstrate the method,

Applications to other geometries are indicated,



1 Introduction

The object of this paper is to discuss a technique for solving a class
of radiation and diffraction problems which have conventionally been formulated
in terms of the Wiener-Hopf technique.* In essence, the present methdd is an
extension of the function-theoretic technique introduced by Whitehead [1951]
for solving an infinite set of equations associated with the problem of diffrac-
tion by an infinite stack of periodically-spaced half-planes. Numerous other

‘authors (see for instance, Hurd and Gruenberg [1954], Mittra [1959], Pace and

Mittra [1964] and Karjala and Mittra [1965]) have demonstrated the usefulness of v

the method of formulation in terms of an infinite set of equations through ap-
plications to a wide variety of problems. The geometries associated with the
above problems have the common feature that in general they are related to, and
are modifications of, certain basic configurations which may be classified as
the Wiener-Hopf type. However, to date the application of .the function-theo-
retic technique has been confined either to the closed-region problems such as
discontinuities in a waveguide, or to certain open-region problems, which be-
cause of their periodic nature, may be related to some equivalent closed-region
problem. Also, previous workers using the function-theoretic approach have
restricted themselves to geometries conforming to the cartesian system only. In
contrast, it is well known that the Wien;r-Hopf technique is applicable to some
semi-infinite geometries in the cylindrical system and to a number of open-

region problems.

* For exhaustive discussion and numerous illustrationsof the Wiener-Hopf tech-
nique see Noble [1958].




In this paper we extend the function-theoretic approach to sdﬁe
aperiodic open-region geometries. To illustrate the technique, the problem
of an open-ended parallel plane waveguide is considered in some detail. Ap-
plications to other geometries, such as the open-ended circular waveguide or
the radfation from an open-ended inhomogeneous parallel plane waveguide are
indicated. Some related bfoblems which may be regarded as modifications of

the basic Wiener-Hopf geometry are discussed briefly.

2 Radiation from a Parallel Plate Waveguide

2.1 Formulation of the problem

Let two parallel plates at x = -b, b, z < 0 form an open-ended wave-

guide as shown in Fig. 1.

} Per fect conductors

)

|
. b

Fig. 1. Open-ended parallel plate waveguide

The incident field is assumed to be the TEM mode with the magnetic
field intensity vector parallel to the walls of the guide. Since the incident

field is independent of the y-coordinate and the entire structure is uniform




with respect to the y-axis, the total field will also be independent of v.
Therefore we wish to solve the two-dimensional wave equation for the scalar

potential ¢

(2.1)
z 2z
"¢ + o’d + kf¢= 0
o x* 0%z
A1l of the field quantities are derivable from ¢ by letting H =¢, E = Tl"'§£§q
, y X  jwe oz
_-1 o . - - _ '
and Ez = T Ox The following boundary éondltnons apply on ¢:

a) ¢ andV® are finite in all regions, except at the edge of the

guide where |V¢, becomes infinite according to the edge condition

-

[Meixner, 1954] as r_
b) ¢ and ®/dx are continuous across the interface at z = 0.
c) ®P/ox vanishes on the walls of the guide at x = b and x = -b.
d) Apart from the incident component, ¢ satisfies the appropriate
radiation condition for large distances away from the origin.
e) P satisfies the edge condition as the edge of the plate is ap-

1
proached, that is, goes to zero as r2.

The space in which the guide is immersed is divided into four regions
for convenience and are designated as regions A, B, C, D as seen in Fig. 1.

The expressions for ¢ which satisfy (2.1) and are valid for each region may be

written as

(2.2)

CPB — Be P? s P‘m ~os mg‘— (x+h)eb.?
¢A = ALY Cos (K X e~ T4
e, (2.3)
. =jwt . .
e time convention.
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$c

[Cz CCY) cos¥(x—b) e dy (2.4)

$u= [ CCr)cosyex-bye®dr (2.9)

where B is the magnitude of.the incident H field. C] and C2 are contours going

from zero to infinity and passing below the branch point at ko, if k0 is real.

Also

(2.6)

B = (@I - (& = -3 [l o)
.
T=la- ke = -3 [Kk- N

k = w “LD eo (2.9)

(2.7)

[vr- = -3]e- ¢

The branches of Bm, 7, T were chosen to give outgoing waves. That is, if kO is
complex, then kO = k] + jkz, where k], k2 >0. Also the real part of Bm is
greater than zero and the real parts of n and v are greater than zero along the
contours of integration if the branches are chosen so that (2.6), (2.7) and
(2.8) hold. Obviously conditions (c¢) and (d) are satisfied by the form of
equations (2.2) to (2.5) and definitions (2.6), (2.7) and (2.8). The symmetric

form used in equations (2.2) to (2.5) was dictated by the fact that both the

incident ¢ and the geometry are symmetric about x = 0.




Continuity of Hy and Ex at the interface requires that the following

equations hold at z = 0:

(2.10)
chCU’) cos¥ (x—b)d v
= fCIA(d)Cosdxdd , bsX
B+ %L,Bm Cos—m—}(x-o-b) (2.11)
= jcl A(X) osex dX  , —bsXx<b
jczC(()WSY(—X—E)C‘( (2.12)
= fC. AR) cosetx d 5  x<-b
and
}cLY(C(Y) cos ¥ (x—b)dy (2.13)
== [ TAG) cossxdx 5 bs¥
et L)
—P"B + = P..\ Bm casz\r (x+b) (2.1
= —[ci?A(o()COSO(Xdo( ; —bsx<b
,rccr -X-b
fcﬂ (r) cos V¥ (-X-b)d V¥ (215

= — [ TAE) cosxxdx ; x<-b

The solutions of equations (2.10) to (2.15) for the unknown functions C(y), A(q)
and the infinite number of unknown coefficients'Bm will yield a solution for
the fields by insertion into equations (2.2) to (2.5). The solution of these
unknowns is discussed next.
2.2 Solution of B_, A(d) and C(y)

In order to solve for the unknowns, first eliminate the x variation

from (2.10) through (2.15) by multiplying by~N2ne 10X and integrating from



-0 to w. This gives

2 BXsin («£b) 2 Bp 2K Sin(Lb)

T2m (-p3)  meelzm (*-fro)

2 sin («b) C(ar) , (2.16)
oz . T° M A=)

— 2 BB oksin(=b) 2 Bm P2 s Sin (A b)
Jzm (Tr-p5) TZ.T2n (- - B

onSnn(*b)f"Zc(tr) dr= [T A) (2.17)

N 2T Ca T

The B, coefficients may be obtained by first eliminating A(®) from (2.16) and

(2.17) . This is done by multiplying (2.16) by 1 and adding to (2.17) to get

B B C
> Bm _CCV) =
’z’+Pn+ m=o’r_PM JCL ’t’ y‘l C{r °© (2.]8)

It is interesting to observe that for the closed structure, that is,
one in which the waveguide is enclosed within a larger waveguide as indicated

in Figure 2, the corresponding equation is

> Cm ° Bm B
-5 s B2m_ . 2 -5 .
m= T A 07}‘?"'* Tptee ’ ~
p=o, 1, 2, - (2.19)

)

The above equation may be obtained.by expanding ¢ in the four regions

A, B, C, and D, matching ¢ and 0®/0z at z = 0 and eliminating the A 's. Here:

C,are the coefficients of the normal modes in regions C and D.

Am are the coefficients of the normal modes in region A.
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Fig. 2. Coupled paralliel plate waveguides

Equation (2.18) may be regarded as a limiting case of (2.19) in the
following sense: as a, c approach infinity, such that a - ¢ = b is maintained,
the propagation constants M and Tp approach a continuous spectrum and the sum
of the normal modes becomes an integral over a contour which may be associated
with the continuous version of the eigenvalue spectrum. Thus (2.19) approaches
(2.18) as a limiting case.

To extract the B_ coefficient from equation (2.18), we shall employ
an extension of m

Athe function-theoretic method [Hurd and Gruenberg, op. cit.] used in the
coup led waveguide problem. We select a function H{w) which has branch points

at BO and infinity, is analytic elsewhere except at simple poles at w = Bm and
w =B, and goes to zero at least as fast as w|™" , |w| = e, v>0. This

function may be obtained by reference to the coupled waveguide problem as ex-

plained in section 3.



Consider the following integral

L HCw) g (2.22)
2T) Js T-w
. C. R(w)
where: (w) =
H (@) 11(@,(3)(6\” B-) (w~p.) (2.23)
H(w) —> le-s/z as ]w, —> » in the upper half plane and decays exponenti-

ally in the lower half plane.

Co = unknown polynomial in w but is equal to a constant in this case to satisfy

the edge condition, (refer to section 3), and

(2.24)

AL () = ,f,‘KTi (1= pm>&m

R(w)= EXF *%’[“‘Ce"‘ﬂn(%)]—jb—%

——%Jk‘f + ot L (5 'ff“ﬂ)} (2.25)

S = closed contour chosen to enclose the poles at Bm, m=1,2,..., and -BO, to
exclude the branch cut and the point 7, and to close in an infinite circle.

The contour S is shown in Fig. 3.




e

= —

Fig. 3. Contour of H(w) integration in equation (2.26).

Using the above properties of H(w) in (2.22),

I H(w)cl
ZTfj S|’z w zna [SL

= Z Residues o Fm,—ﬁ’
(o]

H(w) d w

there is obtained

(2.26)’

The contour Sl is the infinite circle and hence the first term of (2.26) is

zero because of the asymptotic nature of H(w). The contour S, is the contour

around the branch cut and indented around the point 7.

%g XB) . r(=Pe)
wm=ze [= Pm T+ =3
H(w) dw=0
2'rr-a J'n T—-w

From (2.26) one derives

(2.27)
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where r(Bm) is the residue of H(w) evaluated at w = Bm
A comparison of (2.27) with (2.18) suggests that we set
(2.28)
B=r (-B)
=r(B);m=0,1,2,... (2.29)
m
Then
(2.30)

21TJ J;Z H(w\ dw fc ——Q:_—cl( )
tor all T

The unknown constant CO in H(w) is obtained from (2.28) and gives

C,,: -ZBOBI(-‘BV,B) 2.31
R C-f-) ( )
Substituting (2.31) in (2.23) and evaluating (2.29) gives
(2.32)

p = -plL(=P£.B) RCBD
LCgo,PY REBD

anA bEm
_ 2B. Bhe " R(Pm) e 1z (2.33)

mT R (=) LT (Bm.R)
where I[( )(anﬁ)ls the product as defined in (2.24) but with the m-th term

deleted.
The function A(Q) is obtained from (2.15) ‘and (2.16) by multiplying

(2.15) by t and subtracting (2.16) to obtain

e C(ry dr

EE oo
T"@a +an;0 't"\ ?m "t_p—rl
j—fb A (< (2.34)

Again integrating H(w) around a suitable contour in the w-plane which incloses

the points B ,-BO, and this time ~-t, we have




1

I f _HODY oo S _x(Be) tg—_%O*LH(—T) (2.35)

2wy S\*+S2 LT+ w M=o 7T+ ?""

Since [ is again zero, we are left with

5y
Y(-8) & r(Bm) __° H () - (2.36)
T—Pn +MZ.=0 T"’%W\ an [.S; T+ w Aw H( })

A comparison of (2.36) with (2.34) and recalling (2.28), (2.29), and (2.30)

gives

A'(°<)=—H(-1\) =_H(_]°<\_ k2 ) (2.37)

So

2 o LoSin(xb) T(-B.B) R(-XTET)
B uTok Tk p) R (=B (2.38)

It

A (=)

The remaining unknown quantity, viz. C(y) is obtained by reference to
(2.30) which relates C(y) to H(w). As a first step one transforms the path of
integration in the w plane so as to make it identical to the path CZ. This is

achieved in two steps as follows. First rewrite the H(w) integral as

| . _ () —
R(wy ) g

d ' (H ! g He 4, (2.39)
2Ty g, Tmw 2Ty L T

2rr3 Sz T-Ww

where the paths S; and SE refer to the upper and lower portions of the branch

cut integral S Using the relationship between the values of H(w) on the two

9
, which is derivable from the known

jbJerr it
paths, viz., H(“’)‘SQ =e_‘J ® H(w)\ <
2
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expression of H(w), one may obtain

jhIET+wm

| H (w) ) H(w) . — =
a7 st =T e Sin (W57 - (2.40)

Now introduce a change in the variable of integration®in the right

hand side of (2.40), according to

- w (2.41)

This yields the desirable form

| Hew) o0 _ 5’ S HM sin b 4y
;Wj“[s e 4 ST G " (2.42)

2

where 1 is given by (2.7).

Comparing (2.30) and (2.42) one obtains

Cay == e P H (W 5'”(_\;(” r (2.43)

A1l the unknownsare now determined and the solution of the problem is complete.

Before leaving this discussion we shall mention an alternative formu-
lation in which one eliminates the unknowns Bm and C(y), retaining A(Q@) in the
resulting equations. The elimination procedure is very similar to the one em-
ployed by Hurd [op. cit.], the only difference being that the transforms rather
than series representations for ¢ and its derivative are matched at the inter-
face of regions A and C (or D).

The coupled integral equations for A](a) = A(Q)asinbd are given by

)’ /ll(“(z JC# =0
c ’(-—Nl
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Al (<)

L o _ (V. m=o (2.45)
—_— = 2 DW\BBE’Q ) %W\‘{
¢ T -Pm

0, Mm#0

Two related equations giving B 's and C(y) in terms of A(Q) are

(2.46)
A =710
c T*M

(2.47)

- AIQ*) J — © g o
L = 2R.Bob %)W\ + BPm B b ( 1= &m
j; TH P"‘ @ _ ﬁ )
The solution of the (2.44) and (2.45) may be accomplished by con-

structing a function H'(w) which is given by

| (2.48)
H‘(w) _Cc gﬁ(g,lﬁ)

where the quantities appearing in (2.48) are the same as defined before except

for the constant C' which is given by

Cle 2BEE R(B (2.49)
HES

The resulting expressions for the unknowns C(y) and Bm‘s, derived
from the use of function-theoretic technique involving a complex integration in

the w-plane are given by

— _ H(-Bm _ _ H'(GBY
B ik B, Zbp. (2.50)
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CY)= H;‘r?) (2.51)

The function A(Q) may also be expressed in terms of H'(w) in the

sain manner C(y) was related to H(w) in the previous discussion.

3 Construction of H{(w)

In the previous section the solution of (2.18) was based on being
able to obtain a function H(w) satisfying certain specified conditions which
were <et forth in Section 2. in the following we discuss a method for the
devivation of H(w).

The insight for constructing H{w) comes from the procedure used
in the closed waveguide problem (Fig. 2). To solve the closed guide equation,
i.c. (2.19), a function is chosen to have:

a) poles at Bm, m=1,2,..., B_, -50,1]m, m=1,2,...

b) zeros at T p 1, 2,...

c) asymptotic behavior as [w[-v, v >0, as |w| = o

A~ in the open case, v depended on the edge condition. For the closed case

Hc(w) is taken to be

HC(V\)): I(W'T) %: (w) o .
I (w.m) L (w. ) (m+(5°)(w—(53)

(3.1)

whera Il (w,s) and II (w,n) are obtained by replacing b by a and c, respec-

tively, in the expression for I (w,B) (see 2.24), and gc(w) is chosen to give
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proper asyhptotic behavior of-Hc(w).

Equation (3.1) admits an alternate representation

- gccw) '
+*c@”)“ Tr(w,ﬁj(wl—@f) Rc(“» (3.2)

' / /
w Foon) _ R)
Re(w)=exp L U“ ("ﬁrx:)ﬂw—k:] =182 Fzm)d{l

(3.3)
where:
a) F](Y) has simple zeros at%{% n=1, 2,
b) FZ(Y) has simple zeros atC%I, n=1, 2,
c) Fi = dF]/dY , Ez = dFZ/dY
d) Z is the contour shown in Fig. 4, ‘
r Plane.
rx ) x = b/| + j (7.
Z Zevos of Fal¥)
|- /
] /
. i ( .
——— »*é»@)———-@» > @ e, --;--—-——;. b e ,,A?
2: T b , Y,

| .
s -3
~ i
Nob
\\ ’

! - Reros of Fi (V1)

‘Fig. 4. Contour used in the integral representation of Rc(w)
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Ff(Y) and FZ(Y) may be identified with the functions which when set

to zero, result in the characteristic equationsfor the regions A and C (or D),

respectively (see Fig. 2). In this particular problem
.F‘(r) = sin & (3.4)
Fa(Y)= sinyc (3.5)

As we shall see shortly, the particular form of representation in

(3.3) is useful in deriving H(w) by taking the limit of Rc(w) as a = o,

C—>x®, a-¢ b. Another important remark in connection with (3.3) con-
cerns its generality, in that it applies to several other geometries involving
the junction of a semi-infinite waveguide to another infinite guide of larger
dimensions. It is found that in these cases the form of (3.3) remains un-
changed. One needs only to substitute the characteristic expressions for
F](Y) and FZ(Y), appropriate for the particular geometry under consideration.
The last point is discussed further in Section 4.

Returning to the problem at hand, we recall that in Section 2, it
was discussed in connection with (2.19) that the discrete propagation con-
stants nm'and Tp approach a continuum going from Bo to infin{ty as a, ¢ —=> «x,
such that a - ¢ =b is maintainea. This suggests that in the open case we

choose

_ g)(t\)) _Rl(L\)>__ .
H(w) = T B (wrp7) (3.6)

where

b 3.7
Rl(QQ’v’ ' [Re () (.7)




and g{w) is determined by satisfying the requirement on the asymptotic behavior
of H(w). Taking the limits of the ratios F{/F] and Fé/ F2 along the upper and
lower portions of the Z path in the complex plane and rearranging the results,

one obtains from (3.3) and (3.7):

R\(w)=¢xr %J (Qn(l—l(i}k})ﬁ-JY: 1]&3’ (3.8)

o

This may be integrated to glve

b T o (BT kb bl (g
R,(m)=ex\9 "TTJk"J‘“" Qn( k. )+3 = - (3.9)
and the branch ofﬂfkki + wz) is chosen to give the branch point of RI(W) at
w = BO = -jko.

The function g(w) in (3.7) is employed to give the proper asymptotic
1/2

form of H(w)} To insure that the function ¢ behaves as r as the edge of the

3/2

I

guide is approached requires that H(w) have algebraic behavior, namely w~
at the points -Bm or along the curve traced out by -t as & varies over the
contour C; in eq. (2.3), Section 2. This asymptotic behavior is deduced by
studying either the behavior of the reflection coefficient Bm [Hurd, op. cit.]
for large m or the behavior of A(®) [Noble, op. cit.] for large @. One can

verify that the edge condition requires that choice for g(w) to be

b (LCot Lail] - iR

g (w)=C.e (3.10)
where:
Ce = Euler's constant = 0.5772...
€C = unknown constant
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Therefore

= CoR(w) : (3.11)
H() L (wp) (wt+p)(w=Bs)

where:

Rew) = exp { -2 1- 6 1 (1)) - 3

~ b [T g, (e Ly (3.12

The constant part of Rl(w), namely exp(jkob/Z) has been included in ¢,
It may be verified that the function H(w) given in eq. (3.11) has

/2

asymptotic behavior of lwl -3 in the upper half plane and decays exponential-

ly in the lower half plane for large w. At any rate, it satisfies the condi~
tions that it goes to zero for large |w| at least as |w]| -3/2 and further that
the coefficients Bm and the function A(Q) derived from ft conform to the
asymptotic behavior required by the edge condition.

This completes the discussion of the procedure for construction of

the function H(w) .

4 Application to other geometries

We shall briefly discuss certain other configurations to which the
procedure illustrated above in the case of an open-ended waveguide problem is
applicable. The key to the general approach is the recognition of the fact

that the solution of the open region problem is derivable as a limit of the
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closed region problem using an appropriate limiting pl_-ocedure° in the function-
theorefic.technique the limiting procedure is applied to the function Hc(w).
The residues of H(w) evaluated at the singularities of this function are
identified with the unknown mode coefficients in the appropriate regions
(regions B and C for instance in the coupled waveguide problem shown in Fig. 2),
‘and that H(w) itseifvevaluated at certain other points in the w-plane yields the
mode coefficients for the remaining region, viz., region A in Fig. 2.

There are numerous closed waveqguide problems which are solvable by an
application of the function-theoretic technique. Consider for instance a semi-
infinite cylindrical waveguide opening into a larger cylindrical waveguide,

both having a common axis. The geometry of the problem is shown in Fig. 5a.

;©1

Co— ()@ = ~—
"®

Fig. 5. Cylindrical waveguide problems to which- the
function-theoretic technique is applicable

The problem associated with this geometry is solvable by an applica-
tion of a procedure identical to the one used for the parallel plane waveguide
configuration. Expanding the fields in the various regions in terms of the
appropriate mode functions, and applying the continhity of the fields, it is

possible to obtain an equation having a form exactly similar to (2.19) . Thus
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the form of Hc(w) given in (3.2) remains unchanged and consequently Rc(w) ap-

pearing in (3.3) also remains unchanged except for the fact that the functions
F](Y) and FZ(T) now correspond to the characteristic functions associated with
the regionsA and C, respectively, of the cylindrical and coaxial waveguides of

Fig. 5a. Thus one has

Fi(r) = J.(ra) (4.1

and

It

F.(r)= T.(ra No(¥br = T, (rb) No(Ya) (4.2)

Recall that the zeros of F](Y) and Fz(y) are the eigenvalues corresponding to
the regions A and C respectively. It is assumed in writing (4.1) and (4.2)
that the scalar potential ¢ is circularly symmetric and that it satisfies the
Dirichlet condition on the walls. However, the presence of an azimuthal vari-
ation or the introduction of Neumann or mixed type boundary conditions present
no additional difficulties.

To construct the function H(w) appropriate for the open-ended
cylindrical waveguide problem shown in Fig. 5b, one again makes use of the
limiting procedure discussed in Section 3. Substituting (4.1) and (4.2) in
the integral representation (3.3) for Rc(w), one approaches the limit a,c = o,

with a - ¢ = b. The resulting expression for R(w) in this case is

R(w)=~T’;)/D°{Qn(!+J'¥fj )+ e b dv (4.9

o

where

Ley) ——»%[Y{ T (rb) + Nf(m)ﬂ" (4.4)

Comparison of (3.8) with (4.3) reveals that the latter is somewhat more involved

because of the presence of the function £(y) inside the integrand. The
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“corresponding function in the parallel plane wavegquide is simply a constant,
viz., b.

Equation (4.3) cannot be integrated in a c]dsed form as was possible
with (3.8). However, the following observation may be made in regard to the
evaluation of R{w). One may verify that f(y)xb + O(l/YZbZ) large yb and in
fact the deviation from this asymptotic value is small even for moderate values
‘of.Yb.

For the purposes of numerical computations, one may rearrange (4.3)

using (3.8) and (3.9) and write it in the form

S BX —J :— * ‘kob
R(w).':,-%ex? ~-1"T—lkv+w ,Qn(w j‘l<< +w)+3 2}

*Jo” {m.-ﬂg—_:wpw_"j?}{ﬁc(n-e}u s

where the constant M is chosen on the basis of some accuracy criterion one might
set in connection with the infinite integral (4.3).

.The above discussion brings out a strong similarity between the
cylindrical and parallel plane waveguide problems that may not be apparent with-
out a close look at these problems.

Another problem which belongs to the same category as the two examples
discussed above is that of a surface wav; launcher shown in Fig. 6b. Also the

associated closed region problem is shown in Fig. 6a.
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Fig. 6. Surface Wave Launcher and associated closed region problem

The formulation and solution of this problem follows along lines
exactly parallel to the ones discussed above. Once more for the closed problem
one is able to derive an equation corresponding to (2.19). The quantities 6m's,
nm's and Tp's ére again associated with propagation constants in regions B, C
and A, respectively. One is also able to construct an integral representation
of Rc(w) and derive R(w) as the limiting case. As before the functions F](T)
-and FZ(Y) are the characteristic expressions pertaining to the regions A and C
and are easily derivable (see for instance Collin, 1960). An extensive study
of this problem has recently been completed by Bates [1965] who has used the
Wiener-Hopf technique. He employs a factorization procedure based on the solu-
tion of the closed region problem followed by a limiting process. For further
details, the interested reader is directed to the reference cited above. Before
closing, we shall briefly refer to some related problem which strictly speaking
do not conform to the Wiener-Hopf geometry, and to which the present method may

be applied with a suitable modification. Two such problems are shown in Fig. 7.
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Fig. 7. Geometry of related problems.

First consider the problem of diffraction by a thick half-plane.
Although we have not discussed it here, the problem of diffractiqp of a plane
wave by a parallel plane guide may be handled in much the same manner by the
method described in Section 2. From the knowledge of this solution one may
then develop the solution of the thick half-plane proBlem by employing a
generalized scattering matrix approach. For a discussion of this method‘refer
to Pace and Mittra [op. cit.]. The above reference shows how a rapidly con-
verging series solution may be devéloped for such probléms.

Similar remarks hold for the cylindrical waveguide geometry radiating
into a plasma medium. Once again, one might profitably employ the generalized
scattering matrix approach to solve this problem. Detailed discussion of these
problems is beyond the scope of this paper. However, it is planned to present
the analysis of numerous such probjems in a future publication.

We might note in passing that the particular method of partitioning

- the geometry into various regions, e.g. A, B, C and D (see for instance Fig. 1)
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in the present approach provides a convenient attack of the problems shown in

Fig. 7, where one of the basic regions are modified in some manner.
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